论文标题
Prime Power猜想的渐近版本,以实现完美的差异集
An asymptotic version of the prime power conjecture for perfect difference sets
论文作者
论文摘要
我们表明,正整数的数量$ n \ leq n $,以至于$ \ mathbb {z}/(n^2+n+1)\ mathbb {z} $包含一个完美的差异集,渐近$ n/\ log {n} $。
We show that the number of positive integers $n\leq N$ such that $\mathbb{Z}/(n^2+n+1)\mathbb{Z}$ contains a perfect difference set is asymptotically $N/\log{N}$.