论文标题
疟疾控制的时空推荐引擎
A spatiotemporal recommendation engine for malaria control
论文作者
论文摘要
疟疾是一种影响全球大量人口的传染病,需要有效地采用干预措施来减轻疟疾的负担。我们开发一个框架,以帮助决策者决定如何实时分配有限的资源来控制疟疾。我们将资源分配的政策形式化为一系列决策,一个每个干预决定,将最新的疾病与资源分配相关的信息映射。最佳政策必须控制疾病的传播,同时被解释并被视为对利益相关者公平。我们构建了一类可解释的资源分配政策,该政策可以容纳居住在连续领域中的资源的分配,并将用于疾病传播的层次贝叶斯时空时空模型与政策搜索算法相结合,以估算预先指定类中资源分配的最佳政策。与模拟实验中的幼稚方法和对刚果民主共和国的疟疾干预措施相比,拟议框架下的估计最佳政策改善了累积的长期结果。
Malaria is an infectious disease affecting a large population across the world, and interventions need to be efficiently applied to reduce the burden of malaria. We develop a framework to help policy-makers decide how to allocate limited resources in realtime for malaria control. We formalize a policy for the resource allocation as a sequence of decisions, one per intervention decision, that map up-to-date disease related information to a resource allocation. An optimal policy must control the spread of the disease while being interpretable and viewed as equitable to stakeholders. We construct an interpretable class of resource allocation policies that can accommodate allocation of resources residing in a continuous domain, and combine a hierarchical Bayesian spatiotemporal model for disease transmission with a policy-search algorithm to estimate an optimal policy for resource allocation within the pre-specified class. The estimated optimal policy under the proposed framework improves the cumulative long-term outcome compared with naive approaches in both simulation experiments and application to malaria interventions in the Democratic Republic of the Congo.