论文标题

人类在循环设计周期 - 将设计冲刺,敏捷过程和机器学习整合到人类的过程框架

Human-in-the-Loop Design Cycles -- A Process Framework that Integrates Design Sprints, Agile Processes, and Machine Learning with Humans

论文作者

So, Chaehan

论文摘要

对机器学习模型的后箱性质的更透明度的需求导致了机器学习中人类界的近期兴起,即将人类整合到机器学习模型中的过程。目前的工作认为,此过程要求并不代表障碍,而是优化设计过程的机会。因此,这项工作提出了一个新的过程框架,即学习环(Hill)设计周期 - 一种设计过程,该过程整合了敏捷和设计思维过程的结构元素,并控制了循环中人类对机器学习模型的培训。山丘设计周期过程将定性用户测试替换为设计感知的定量心理测量仪器。生成的用户反馈用来训练机器学习模型,并沿着四个设计维度(新颖,能量,简单,工具)指导后续的设计周期。将四维用户的反馈映射到用户的故事和优先级中,因此设计Sprint将用户反馈直接转换为实现过程。循环中的人是一名质量工程师,他仔细检查了收集的用户反馈,以防止无效的数据进入机器学习模型培训。

Demands on more transparency of the backbox nature of machine learning models have led to the recent rise of human-in-the-loop in machine learning, i.e. processes that integrate humans in the training and application of machine learning models. The present work argues that this process requirement does not represent an obstacle but an opportunity to optimize the design process. Hence, this work proposes a new process framework, Human-in-the-learning-loop (HILL) Design Cycles - a design process that integrates the structural elements of agile and design thinking process, and controls the training of a machine learning model by the human in the loop. The HILL Design Cycles process replaces the qualitative user testing by a quantitative psychometric measurement instrument for design perception. The generated user feedback serves to train a machine learning model and to instruct the subsequent design cycle along four design dimensions (novelty, energy, simplicity, tool). Mapping the four-dimensional user feedback into user stories and priorities, the design sprint thus transforms the user feedback directly into the implementation process. The human in the loop is a quality engineer who scrutinizes the collected user feedback to prevents invalid data to enter machine learning model training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源