论文标题

使用图神经网络学习代数多族

Learning Algebraic Multigrid Using Graph Neural Networks

论文作者

Luz, Ilay, Galun, Meirav, Maron, Haggai, Basri, Ronen, Yavneh, Irad

论文摘要

稀疏线性系统的有效数值求解器对于科学和工程至关重要。解决大规模稀疏线性系统的最快方法之一是代数多式(AMG)。 AMG算法构建的主要挑战是选择延长操作员 - 延长操作员是一个问题依赖性的稀疏矩阵,它控制求解器的多尺度层次结构,并且对其效率至关重要。多年来,已经为这项任务开发了许多方法,但是除非非常特殊的情况,却没有已知的单一正确答案。在这里,我们提出了一个学习AMG延长算子的框架,用于具有稀疏的对称阳性(半)确定矩阵的线性系统。我们使用有效的无监督损失函数来训练单个图神经网络从整个此类矩阵到延长操作员的映射。与经典AMG相比,有关广泛问题的实验表明收敛速率提高,这表明了神经网络对开发稀疏系统求解器的潜在效用。

Efficient numerical solvers for sparse linear systems are crucial in science and engineering. One of the fastest methods for solving large-scale sparse linear systems is algebraic multigrid (AMG). The main challenge in the construction of AMG algorithms is the selection of the prolongation operator -- a problem-dependent sparse matrix which governs the multiscale hierarchy of the solver and is critical to its efficiency. Over many years, numerous methods have been developed for this task, and yet there is no known single right answer except in very special cases. Here we propose a framework for learning AMG prolongation operators for linear systems with sparse symmetric positive (semi-) definite matrices. We train a single graph neural network to learn a mapping from an entire class of such matrices to prolongation operators, using an efficient unsupervised loss function. Experiments on a broad class of problems demonstrate improved convergence rates compared to classical AMG, demonstrating the potential utility of neural networks for developing sparse system solvers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源