论文标题
具有高阶空间衍生物PDE的Ultraweak-Laweak-Lake-Local不连续的Galerkin方法
An ultraweak-local discontinuous Galerkin method for PDEs with high order spatial derivatives
论文作者
论文摘要
在本文中,我们开发了一种新的不连续的Galerkin方法,用于求解具有高阶空间衍生物的几种类型的部分微分方程(PDE)。我们结合了局部不连续的Galerkin(LDG)方法的优点和超涉及的不连续的Galerkin(UWDG)方法。首先,我们将具有高阶空间衍生物的PDE重写为低阶系统,然后将UWDG方法应用于系统。我们首先在一个空间维度中考虑第四阶和第五阶非线性PDE,然后将我们的方法扩展到一般的高阶问题和两个空间维度。与LDG方法相比,我们方法的主要优点是我们引入了更少的辅助变量,从而降低了内存和计算成本。我们方法比UWDG方法的主要优点是,为了确保均匀和奇数订单PDE的稳定性,无需内部惩罚条款。我们在一般的非线性情况下证明了方法的稳定性,并为解决方案本身以及近似于其衍生物的辅助变量提供了线性PDE的最佳误差估计。误差估计证明的关键成分是构建数值解的衍生物与元素接口跳跃与溶液衍生物的辅助变量解决方案之间的关系。借助这种关系,我们可以使用离散的Sobolev和Poincaré不平等现象来获得最佳的误差估计。理论发现通过数值实验证实。
In this paper, we develop a new discontinuous Galerkin method for solving several types of partial differential equations (PDEs) with high order spatial derivatives. We combine the advantages of local discontinuous Galerkin (LDG) method and ultra-weak discontinuous Galerkin (UWDG) method. Firstly, we rewrite the PDEs with high order spatial derivatives into a lower order system, then apply the UWDG method to the system. We first consider the fourth order and fifth order nonlinear PDEs in one space dimension, and then extend our method to general high order problems and two space dimensions. The main advantage of our method over the LDG method is that we have introduced fewer auxiliary variables, thereby reducing memory and computational costs. The main advantage of our method over the UWDG method is that no internal penalty terms are necessary in order to ensure stability for both even and odd order PDEs. We prove stability of our method in the general nonlinear case and provide optimal error estimates for linear PDEs for the solution itself as well as for the auxiliary variables approximating its derivatives. A key ingredient in the proof of the error estimates is the construction of the relationship between the derivative and the element interface jump of the numerical solution and the auxiliary variable solution of the solution derivative. With this relationship, we can then use the discrete Sobolev and Poincaré inequalities to obtain the optimal error estimates. The theoretical findings are confirmed by numerical experiments.