论文标题
关于扩展$ f(p)$立方重力的动态功能的注释
A note on the dynamical features for the extended $f(P)$ cubic gravity
论文作者
论文摘要
本文通过在两种特定情况下考虑线性稳定性理论,研究了基于动态系统分析的延伸$ f(p)$立方重力的物理特征,对应于powerlaw $ f(p)= f_0 p^α$和指数$ f(p)$ f(p)= f_0 e^f_0 e^{αp} $ gravity类型,$ f_0 $ f_ as $ f_0 $ and $ f_0 $ and $ f_0 $ and $ f_0 $ and $ f_0 $ and $ f_0 $。在这些情况下,我们分析了相空间复杂性中的效果,揭示了临界点附加的宇宙学解决方案。对于幂律和指数重力类型,我们注意到存在与涉及的临界点相关的两个宇宙学时代,与持续的有效状态方程式描述了对应于De-sitter时代和类似序言的时代。对于所有这些解决方案,我们研究了与稳定性属性相关的动力学特性,从瞬态角度确定了对各种参数的可能约束。动态前景断言,扩展的$ f(p)$立方重力可以代表有希望的修改后的重力理论,从而导致表现在较晚的演变时的加速膨胀。
The paper studies the physical characteristics for the extended $f(P)$ cubic gravity from a transitive perspective based on dynamical system analysis, by considering the linear stability theory in two specific cases, corresponding to power-law $f(P)=f_0 P^α$ and exponential $f(P)=f_0 e^{αP}$ gravity types, where $f_0$ and $α$ are constant parameters. In these cases we have analyzed the effects in the phase space complexity, revealing the cosmological solutions attached to the critical points. For the power-law and exponential gravity types, we have noticed the presence of two cosmological epochs associated to the critical points involved, corresponding to de-Sitter eras and quintessence-like epochs, described by a constant effective equation of state. For all of these solutions we have studied the dynamical characteristics which are associated to the stability properties, determining possible constraints to various parameters from a transient perspective. The dynamical prospects asserted that the extended $f(P)$ cubic gravity can represent a promising modified theory of gravitation, leading to the manifestation of the accelerated expansion at late time evolution.