论文标题

量子电动力学重新归一化的协调空间表示

Coordinate space representation for renormalization of quantum electrodynamics

论文作者

Mojavezi, Amirhosein, Moazzemi, Reza, Zomorrodian, Mohammad Ebrahim

论文摘要

$ $在本文中,我们提出了一种系统的治疗方法,用于对真实空间中量子电动力学的基本重归于。尽管在这种情况下,标准的重归其化是旧学校问题,但尚未在位置空间中完全完成。与众所周知的差异重新规定的最重要区别在于,我们在坐标空间中进行整个过程,而无需转换到动量空间。特别是,我们直接在真实空间中得出构造。当系统的翻译对称性以某种方式破裂时(例如,通过磁场上的非平凡边界条件(BC)),此问题变得很重要。在这种情况下,一个简单的傅立叶变换无法转移到动量空间。因此,在重新归一化的扰动理论的背景下,通过施加重新归一化的条件,坐标空间中的反应将直接取决于BCS(或背景拓扑)。琐碎的卑诗省或琐碎的背景导致通常的标准构造。如果对抗修改,则任何物理数量的量子校正与具有转化不变性的自由空间中的量子校正不同。我们还表明,最多可以订购$α$,我们的反行词将减少为在自由空间中得出的常规标准术语。

$ $In this paper we present a systematic treatment for fundamental renormalization of quantum electrodynamics in real space. Although the standard renormalization is an old school problem in this case, it has not yet been completely done in position space. The most important difference with well-known differential renormalization is that we do the whole procedure in coordinate space without need to transformation to momentum space. Specially, we directly derive the conterterms in real space. This problem becomes important when the translational symmetry of the system breaks somehow explicitly (for example by nontrivial boundary condition (BC) on the fields). In this case, one is not able to move to momentum space by a simple Fourier transformation. Therefore, in the context of renormalized perturbation theory, by imposing the renormalization conditions, counterterms in coordinate space will depend directly on the fields BCs (or background topology). Trivial BC or trivial background lead to the usual standard conterterms. If the counterterms modify then the quantum corrections of any physical quantity are different from those in free space where we have the translational invariance. We also show that, up to order $α$, our counterterms are reduced to usual standard terms derived in free space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源