论文标题

解释和稳定对流的机器学习参数

Interpreting and Stabilizing Machine-learning Parametrizations of Convection

论文作者

Brenowitz, Noah D., Beucler, Tom, Pritchard, Michael, Bretherton, Christopher S.

论文摘要

神经网络是一种有前途的技术,用于在粗分辨率气候模型中参数化亚网格规模物理(例如潮湿的大气对流),但是它们缺乏可解释性和可靠性可阻止采用广泛的采用。例如,尚不完全理解为什么在与大气流体动力学耦合时,神经网络参数化通常会引起巨大的不稳定性。本文介绍了用于解释其行为的工具,这些工具是针对参数化任务的。首先,我们评估神经网络对低对流层稳定性和对流层中水分的非线性敏感性,这是两个广泛研究的潮湿对流控制。其次,我们将这些神经网络的线性响应函数与简化的重力波动力学相结合,并分析诊断相应的相速度,生长速率,波长和空间结构。为了证明它们的多功能性,这些技术在两组神经网络上进行了测试,其中一种是通过社区大气模型(SPCAM)的超级参数化版本(SPCAM)训练的,第二个具有近乎全球的云分辨模型(GCRM)。即使SPCAM模拟的气候比云分辨模型更温暖,但两个神经网络都可以预测在潮湿和不稳定环境中的加热/干燥更强,这与观察结果一致。此外,光谱分析可以预测,当GCM与支持不稳定且具有大于5 m/s的相位速度的重力波的网络耦合时,不稳定会发生。相反,站立不稳定的模式不会引起灾难性的不稳定。使用这些工具,分析了SPCAM-GCRM训练的神经网络之间的差异,以及逐步改善其两种耦合在线表现的策略。

Neural networks are a promising technique for parameterizing sub-grid-scale physics (e.g. moist atmospheric convection) in coarse-resolution climate models, but their lack of interpretability and reliability prevents widespread adoption. For instance, it is not fully understood why neural network parameterizations often cause dramatic instability when coupled to atmospheric fluid dynamics. This paper introduces tools for interpreting their behavior that are customized to the parameterization task. First, we assess the nonlinear sensitivity of a neural network to lower-tropospheric stability and the mid-tropospheric moisture, two widely-studied controls of moist convection. Second, we couple the linearized response functions of these neural networks to simplified gravity-wave dynamics, and analytically diagnose the corresponding phase speeds, growth rates, wavelengths, and spatial structures. To demonstrate their versatility, these techniques are tested on two sets of neural networks, one trained with a super-parametrized version of the Community Atmosphere Model (SPCAM) and the second with a near-global cloud-resolving model (GCRM). Even though the SPCAM simulation has a warmer climate than the cloud-resolving model, both neural networks predict stronger heating/drying in moist and unstable environments, which is consistent with observations. Moreover, the spectral analysis can predict that instability occurs when GCMs are coupled to networks that support gravity waves that are unstable and have phase speeds larger than 5 m/s. In contrast, standing unstable modes do not cause catastrophic instability. Using these tools, differences between the SPCAM- vs. GCRM- trained neural networks are analyzed, and strategies to incrementally improve both of their coupled online performance unveiled.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源