论文标题
高光谱式图像融合与加权套索
Hyperspectral-Multispectral Image Fusion with Weighted LASSO
论文作者
论文摘要
光谱成像可以在遥感,生物医学和天文学中对材料的空间分辨鉴定。但是,采集时间需要平衡光谱和空间分辨率与信噪比。高光谱成像提供了出色的材料特异性,而多光谱图像更快地收集了更大的忠诚度。我们提出了一种融合高光谱和多光谱图像的方法,以提供高质量的高光谱输出。提出的优化利用了最小绝对收缩和选择操作员(LASSO)执行可变选择和正则化。通过应用乘数的交替方向方法(ADMM)来减少计算时间,并通过使用Hardie方法使用最大后验(MAP)估算融合图像来初始化融合图像。我们证明,与公开可用图像上的现有方法相比,提出的稀疏融合和重建提供了量化的结果。最后,我们展示了如何实际应用所提出的方法在生物医学红外光谱显微镜中。
Spectral imaging enables spatially-resolved identification of materials in remote sensing, biomedicine, and astronomy. However, acquisition times require balancing spectral and spatial resolution with signal-to-noise. Hyperspectral imaging provides superior material specificity, while multispectral images are faster to collect at greater fidelity. We propose an approach for fusing hyperspectral and multispectral images to provide high-quality hyperspectral output. The proposed optimization leverages the least absolute shrinkage and selection operator (LASSO) to perform variable selection and regularization. Computational time is reduced by applying the alternating direction method of multipliers (ADMM), as well as initializing the fusion image by estimating it using maximum a posteriori (MAP) based on Hardie's method. We demonstrate that the proposed sparse fusion and reconstruction provides quantitatively superior results when compared to existing methods on publicly available images. Finally, we show how the proposed method can be practically applied in biomedical infrared spectroscopic microscopy.