论文标题

通过条件域归一化调整对象检测器

Adapting Object Detectors with Conditional Domain Normalization

论文作者

Su, Peng, Wang, Kun, Zeng, Xingyu, Tang, Shixiang, Chen, Dapeng, Qiu, Di, Wang, Xiaogang

论文摘要

现实世界中的对象检测器通常会受到不同数据集之间的域间隙的挑战。在这项工作中,我们提出条件域归一化(CDN)以弥合域间隙。 CDN旨在将不同的域输入编码到共享潜在空间中,其中来自不同域中的特征带有相同的域属性。为了实现这一目标,我们首先通过一个域嵌入模块将特定于域特异性属性从一个域中脱离语义特征,该模块学习了一个域向量以表征相应的域属性信息。然后,该域矢量通过有条件的归一化来编码来自另一个域的特征,从而产生了带有相同域属性的不同域的功能。我们将CDN纳入对象检测器的各个卷积阶段,以适应解决不同级别表示的域移位。与现有的适应性作品相反,对语义特征进行域混淆学习以删除域特异性因素,CDN通过调节一个域的语义特征来对齐不同的域分布,以在其他域的学习域 - 向量上进行调节。广泛的实验表明,CDN在实际到真实和合成至现实的适应性基准上都非常优于现有方法,包括2D图像检测和3D点云检测。

Real-world object detectors are often challenged by the domain gaps between different datasets. In this work, we present the Conditional Domain Normalization (CDN) to bridge the domain gap. CDN is designed to encode different domain inputs into a shared latent space, where the features from different domains carry the same domain attribute. To achieve this, we first disentangle the domain-specific attribute out of the semantic features from one domain via a domain embedding module, which learns a domain-vector to characterize the corresponding domain attribute information. Then this domain-vector is used to encode the features from another domain through a conditional normalization, resulting in different domains' features carrying the same domain attribute. We incorporate CDN into various convolution stages of an object detector to adaptively address the domain shifts of different level's representation. In contrast to existing adaptation works that conduct domain confusion learning on semantic features to remove domain-specific factors, CDN aligns different domain distributions by modulating the semantic features of one domain conditioned on the learned domain-vector of another domain. Extensive experiments show that CDN outperforms existing methods remarkably on both real-to-real and synthetic-to-real adaptation benchmarks, including 2D image detection and 3D point cloud detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源