论文标题
理想的圈子媒体中的Microswimmers
Ideal circle microswimmers in crowded media
论文作者
论文摘要
Microswimmers本质上暴露在拥挤的环境中,其运输特性以微妙的方式取决于与障碍的相互作用。在这里,我们研究了一个单个理想圆游泳者的模型,该模型探索了二维无序障碍阵列的模型。微观机器在可自由接近的空间中的圆形轨道上移动,并在碰撞时在一定时间内遵循障碍物的表面。取决于圆形轨道的障碍物密度和半径,微型威格器显示长距离传输或位于有限区域。我们表明,有从两个局部状态到扩散状态的过渡,每个状态都由潜在的静态渗透过渡驱动。我们确定非平衡状态图,并通过计算机模拟计算均方位移和扩散。靠近过渡线的传输变得宽敞,这被合理化为一种动态关键现象。
Microswimmers are exposed in nature to crowded environments and their transport properties depend in a subtle way on the interaction with obstacles. Here, we investigate a model for a single ideal circle swimmer exploring a two-dimensional disordered array of impenetrable obstacles. The microswimmer moves on circular orbits in the freely accessible space and follows the surface of an obstacle for a certain time upon collision. Depending on the obstacle density and the radius of the circular orbits, the microswimmer displays either long-range transport or is localized in a finite region. We show that there are transitions from two localized states to a diffusive state each driven by an underlying static percolation transition. We determine the non-equilibrium state diagram and calculate the mean-square displacements and diffusivities by computer simulations. Close to the transition lines transport becomes subdiffusive which is rationalized as a dynamic critical phenomenon.