论文标题
Bott-Samelson品种的Gromov宽度
The Gromov width of Bott-Samelson varieties
论文作者
论文摘要
我们证明,任何Bott-Samelson品种的Gromov宽度均为Schubert品种,并配备了理性的Kähler形式,等于最小曲线的合成区域。由此,我们得出了对Bott-Samelson品种上宽线束的Seshadri常数的估计。
We prove that the Gromov width of any Bott-Samelson variety birational to a Schubert variety and equipped with a rational Kähler form equals the symplectic area of a minimal curve. From this, we derive an estimate for the Seshadri constants of ample line bundles on Bott-Samelson varieties.