论文标题

任意形状文本检测的深度关系推理图网络

Deep Relational Reasoning Graph Network for Arbitrary Shape Text Detection

论文作者

Zhang, Shi-Xue, Zhu, Xiaobin, Hou, Jie-Bo, Liu, Chang, Yang, Chun, Wang, Hongfa, Yin, Xu-Cheng

论文摘要

由于场景文本的种类繁多和复杂性,任意形状的文本检测是一项具有挑战性的任务。在本文中,我们提出了一个新颖的统一关系理性图网络,以进行任意形状的文本检测。在我们的方法中,创新的本地图通过卷积神经网络(CNN)和通过图卷积网络(GCN)的深层关系推理网络桥接了文本提案模型,从而使我们的网络端到端可训练。为了具体,每个文本实例都将分为一系列小矩形组件,小组的几何属性(例如,高度,宽度和方向)将由我们的文本建议模型估算。给定几何属性,本地图构造模型可以大致建立不同文本组件之间的联系。为了进一步推理,并推断了组件与其邻居之间联系的可能性,我们采用基于图的网络来对本地图进行深层的关系推理。公共可用数据集的实验证明了我们方法的最新性能。

Arbitrary shape text detection is a challenging task due to the high variety and complexity of scenes texts. In this paper, we propose a novel unified relational reasoning graph network for arbitrary shape text detection. In our method, an innovative local graph bridges a text proposal model via Convolutional Neural Network (CNN) and a deep relational reasoning network via Graph Convolutional Network (GCN), making our network end-to-end trainable. To be concrete, every text instance will be divided into a series of small rectangular components, and the geometry attributes (e.g., height, width, and orientation) of the small components will be estimated by our text proposal model. Given the geometry attributes, the local graph construction model can roughly establish linkages between different text components. For further reasoning and deducing the likelihood of linkages between the component and its neighbors, we adopt a graph-based network to perform deep relational reasoning on local graphs. Experiments on public available datasets demonstrate the state-of-the-art performance of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源