论文标题

使用复杂的调查人群数据将随机试验结果概括为目标人群

Generalizing Randomized Trial Findings to a Target Population using Complex Survey Population Data

论文作者

Ackerman, Benjamin, Lesko, Catherine R., Siddique, Juned, Susukida, Ryoko, Stuart, Elizabeth A.

论文摘要

随机试验被认为是估计因果效应的黄金标准。试验结果通常用于为政策和编程工作提供信息,但由于试验和人群之间的主持人的潜在差异,他们的结果可能无法很好地概括为相关目标人群。已经开发了统计方法来通过结合试验和人口数据,并加权试验以相似于基线协变量的人口。在健康和教育等领域的规模调查与复杂的调查设计是人口数据的逻辑来源;但是,当将试验结果概括为复杂的调查时,目前尚无最佳实践。我们建议并调查在这种情况下加入调查权重的方法。我们通过将其在模拟中提出的估计器的性能与忽略复杂调查设计的估计器进行比较来检查拟议的估计器的性能。然后,我们应用了该方法来概括两项试验的发现 - 一种用于降低血压的生活方式干预和基于Web的干预措施,以治疗物质使用障碍 - 使用复杂的研究中的种群数据来处理各自的目标群体。这项工作突出了在将试验结果推广到由复杂调查样本代表的人群中概括的复杂调查设计中正确考虑复杂调查设计的重要性。

Randomized trials are considered the gold standard for estimating causal effects. Trial findings are often used to inform policy and programming efforts, yet their results may not generalize well to a relevant target population due to potential differences in effect moderators between the trial and population. Statistical methods have been developed to improve generalizability by combining trials and population data, and weighting the trial to resemble the population on baseline covariates.Large-scale surveys in fields such as health and education with complex survey designs are a logical source for population data; however, there is currently no best practice for incorporating survey weights when generalizing trial findings to a complex survey. We propose and investigate ways to incorporate survey weights in this context. We examine the performance of our proposed estimator in simulations by comparing its performance to estimators that ignore the complex survey design.We then apply the methods to generalize findings from two trials - a lifestyle intervention for blood pressure reduction and a web-based intervention to treat substance use disorders - to their respective target populations using population data from complex surveys. The work highlights the importance in properly accounting for the complex survey design when generalizing trial findings to a population represented by a complex survey sample.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源