论文标题

通过条件生成对抗网络完成多模式的形状

Multimodal Shape Completion via Conditional Generative Adversarial Networks

论文作者

Wu, Rundi, Chen, Xuelin, Zhuang, Yixin, Chen, Baoquan

论文摘要

已经提出了几种深度学习方法,以从形状采集设置中完成部分数据,即填充形状缺失的区域。但是,这些方法仅通过单个输出来完成部分形状,在推理缺失的几何形状时忽略了歧义。因此,我们提出了一个多模式的形状完成问题,在其中我们通过学习一对多映射来完成具有多个输出的部分形状。我们开发了第一种多模式结束方法,该方法通过条件生成建模完成部分形状,而无需配对训练数据。我们的方法通过根据可能的结果的多模式分布来调节完成方法来提炼歧义。我们广泛评估了包含不同形式不完整形式的几个数据集上的方法,并在定性和定量上比较了我们方法的几种基线方法和变体之间,证明了我们方法在完成具有多样性和质量的部分形状方面的优点。

Several deep learning methods have been proposed for completing partial data from shape acquisition setups, i.e., filling the regions that were missing in the shape. These methods, however, only complete the partial shape with a single output, ignoring the ambiguity when reasoning the missing geometry. Hence, we pose a multi-modal shape completion problem, in which we seek to complete the partial shape with multiple outputs by learning a one-to-many mapping. We develop the first multimodal shape completion method that completes the partial shape via conditional generative modeling, without requiring paired training data. Our approach distills the ambiguity by conditioning the completion on a learned multimodal distribution of possible results. We extensively evaluate the approach on several datasets that contain varying forms of shape incompleteness, and compare among several baseline methods and variants of our methods qualitatively and quantitatively, demonstrating the merit of our method in completing partial shapes with both diversity and quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源