论文标题
在距离紧密间隔的行星对中的节点分解
Nodal Precession in Closely Spaced Planet Pairs
论文作者
论文摘要
行星 - 线条扰动可能会导致行星的轨道元素在世俗的时间尺度上发生变化。先前的工作已经评估了行星的节点预进时间率低于低$α$(半轴轴比,0 $ <$ <$ <$ <$α$$ \ leq $ 1)。我们的模拟表明,高$α$(或低时期比)的系统,类似于Kepler调查中发现的多平台系统,具有淋巴结进程率,更强烈地依赖于偏心和倾斜度。我们将淋巴结进程率的完全扩展到令人不安的功能中的第四阶扩展,并表明该分析解决方案更好地描述了高$ $ $ a $ planet Pairs的模拟N体行为;在$α\ $ 0.5时,平均四阶解决方案将中位分析误差从线性理论中减少7.5倍,而二阶扩展为6.2。我们设定了偏心率和倾向的局限性,其中该理论是通过N体积分确切验证的,这在行星系统的未来世俗处理中可能很有用。
Planet-planet perturbations can cause planets' orbital elements to change on secular timescales. Previous work has evaluated the nodal precession rate for planets in the limit of low $α$ (semi-major axis ratio, 0$<$$α$$\leq$1). Our simulations show that systems at high $α$ (or low period ratio), similar to multiplanet systems found in the Kepler survey, have a nodal precession rate that is more strongly dependent on eccentricity and inclination. We present a complete expansion of the nodal precession rate to fourth order in the disturbing function and show that this analytical solution much better describes the simulated N-body behavior of high-$α$ planet pairs; at $α\approx$ 0.5, the fourth-order solution on average reduces the median analytical error by a factor of 7.5 from linear theory and 6.2 from a second-order expansion. We set limits on eccentricity and inclination where the theory is precisely validated by N-body integrations, which can be useful in future secular treatments of planetary systems.