论文标题

GPU加速了越野钢制持久性条形码的计算

GPU-Accelerated Computation of Vietoris-Rips Persistence Barcodes

论文作者

Zhang, Simon, Xiao, Mengbai, Wang, Hao

论文摘要

越野杆持续条形码的计算既是执行密集型又是内存密集的。在本文中,我们研究了越野钢制持久性条形码的计算结构,并通过与GPU的连接确定了几种独特的数学特性和算法机会。从数学上和经验上讲,我们研究了明显对的属性,它们是独立识别的持久性对,其中占持续对的99%。我们给出了表观成对速率的理论上和下限,并为平均情况建模。我们还设计了大量的并行算法,以利用可以彼此独立处理的大量简单。确定了这些机会后,我们开发了一种用于计算越野钢制持久性条形码的GPU加速软件,称为Ripser ++。在原始盗窃程序的总执行时间内,该软件可实现高达30倍的速度,并且还将CPU-MEMORY使用率降低到2.0倍。我们认为,我们基于GPU加速的努力为在后摩尔法律时代的拓扑数据进行进步开辟了新的篇章。

The computation of Vietoris-Rips persistence barcodes is both execution-intensive and memory-intensive. In this paper, we study the computational structure of Vietoris-Rips persistence barcodes, and identify several unique mathematical properties and algorithmic opportunities with connections to the GPU. Mathematically and empirically, we look into the properties of apparent pairs, which are independently identifiable persistence pairs comprising up to 99% of persistence pairs. We give theoretical upper and lower bounds of the apparent pair rate and model the average case. We also design massively parallel algorithms to take advantage of the very large number of simplices that can be processed independently of each other. Having identified these opportunities, we develop a GPU-accelerated software for computing Vietoris-Rips persistence barcodes, called Ripser++. The software achieves up to 30x speedup over the total execution time of the original Ripser and also reduces CPU-memory usage by up to 2.0x. We believe our GPU-acceleration based efforts open a new chapter for the advancement of topological data analysis in the post-Moore's Law era.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源