论文标题
知识图完成方法的现实重新评估:一项实验研究
Realistic Re-evaluation of Knowledge Graph Completion Methods: An Experimental Study
论文作者
论文摘要
在使用嵌入模型进行知识图完成的主动研究领域,特别是在链接预测的任务中,大多数先前的研究都使用了两个基准数据集FB15K和WN18来评估此类模型。这些研究中这些和其他数据集中的大多数三元组都属于反向和重复关系,这些关系由于语义重复,相关性或数据不完整而显示出很高的数据冗余。这是数据泄漏过多的情况---模型是使用功能训练的,否则在需要将模型应用于真实预测时将无法使用。也有笛卡尔产品关系,适用主题和物体的笛卡尔产品形成的每个三倍都是一个真实的事实。上述关系上的链接预测很容易,可以使用直接规则而不是复杂的嵌入模型来更好地准确地实现。这些模型的一个更根本的缺陷是,鉴于此类数据,链接预测方案在现实世界中不存在。本文是第一个系统的研究,其主要目的是在删除不现实的三元组时评估嵌入模型的真正有效性。我们的实验结果表明,这些模型的准确性要比我们过去所感知的要少得多。他们的准确性差会使预测链接到一个任务,而无需真正有效的自动化解决方案。因此,我们呼吁重新进行可能的有效方法。
In the active research area of employing embedding models for knowledge graph completion, particularly for the task of link prediction, most prior studies used two benchmark datasets FB15k and WN18 in evaluating such models. Most triples in these and other datasets in such studies belong to reverse and duplicate relations which exhibit high data redundancy due to semantic duplication, correlation or data incompleteness. This is a case of excessive data leakage---a model is trained using features that otherwise would not be available when the model needs to be applied for real prediction. There are also Cartesian product relations for which every triple formed by the Cartesian product of applicable subjects and objects is a true fact. Link prediction on the aforementioned relations is easy and can be achieved with even better accuracy using straightforward rules instead of sophisticated embedding models. A more fundamental defect of these models is that the link prediction scenario, given such data, is non-existent in the real-world. This paper is the first systematic study with the main objective of assessing the true effectiveness of embedding models when the unrealistic triples are removed. Our experiment results show these models are much less accurate than what we used to perceive. Their poor accuracy renders link prediction a task without truly effective automated solution. Hence, we call for re-investigation of possible effective approaches.