论文标题

迈向外部性数据拍卖

Towards Data Auctions with Externalities

论文作者

Agarwal, Anish, Dahleh, Munther, Horel, Thibaut, Rui, Maryann

论文摘要

随着公司越来越多地使用由外部获得的培训数据推动的机器学习模型,数据市场的设计变得非常重要。一个关键的考虑因素是,当数据固有地自由复制的数据分配给竞争公司时,公司面临的外部性。在这种情况下,我们证明了数据卖家的最佳收入增加,因为公司可以支付以防止向他人分配。为此,我们首先通过通过提高所提供的预测准确性来对数据进行建模,从而减少将多个数据集分配和定价为单个数字商品拍卖的组合问题。然后,我们得出了最大化机制的福利和收入,并强调了公司的私人信息形式(无论人们对他人施加的外部性是已知的,还是反之亦然)如何影响所得的结构。在所有情况下,在适当的假设下,最佳分配规则是每个公司的单个阈值,其中所有数据均已分配或无。

The design of data markets has gained importance as firms increasingly use machine learning models fueled by externally acquired training data. A key consideration is the externalities firms face when data, though inherently freely replicable, is allocated to competing firms. In this setting, we demonstrate that a data seller's optimal revenue increases as firms can pay to prevent allocations to others. To do so, we first reduce the combinatorial problem of allocating and pricing multiple datasets to the auction of a single digital good by modeling utility for data through the increase in prediction accuracy it provides. We then derive welfare and revenue maximizing mechanisms, highlighting how the form of firms' private information - whether the externalities one exerts on others is known, or vice-versa - affects the resulting structures. In all cases, under appropriate assumptions, the optimal allocation rule is a single threshold per firm, where either all data is allocated or none is.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源