论文标题
在多个SLE上,用于FK-ing型模型
On multiple SLE for the FK-Ising model
论文作者
论文摘要
我们证明了关键平面Q = 2随机群集模型中多个接口的收敛,并提供了缩放限制的明确描述。值得注意的是,在正式替换了每个旋转的位置及其复杂的共轭之后,在半平面中的临界ISING模型中的散装旋转相关性与实际线上的散装相关性相吻合。作为推论,我们恢复了以旋转相关性的贝拉文 - polyakov-zamolodchikov方程。
We prove convergence of multiple interfaces in the critical planar q = 2 random cluster model, and provide an explicit description of the scaling limit. Remarkably, the expression for the partition function of the resulting multiple SLE(16/3) coincides with the bulk spin correlation in the critical Ising model in the half-plane, after formally replacing a position of each spin and its complex conjugate with a pair of points on the real line. As a corollary, we recover Belavin-Polyakov-Zamolodchikov equations for the spin correlations.