论文标题

在涉及部分重量的分数laplacian的双重关键系统上

On a doubly critical system involving fractional Laplacian with partial weight

论文作者

Yang, Tao

论文摘要

在本文中,我们基于加权莫雷空间建立了一种新的改进的Sobolev不平等。 To be precise, there exists $C=C(n,m,s,α)>0$ such that for any $u,v \in {\dot{H}}^s(\mathbb{R}^{n})$ and for any $θ\in (\barθ,1)$, it holds that \begin{equation} \label{eq0.3} \ big(\ int_ {\ mathbb {r}^{n}}} \ frac {|(uv)(y)|^{\ frac {2^*_ {s}(s}(α)}(α)} {2} {2}}}}}}}}}} {| y'|^α}} (α)}}} \ leq c || u || _ {\ dot {h}^s(\ mathbb {r}^{n})}}^{\fracθ{2}}} || v || _ {\ dot {h}^s(\ mathbb {r}^{n})}}^{\fracθ{2}}}}}} ||(uv)||^{\ frac {1- frac {1-θ}}} {2}} {2}} _ { l^{1,n-2s+r}(\ mathbb {r}^{n},| y'|^{ - r})},\ end {equation {equation}其中$ s \!\ in \! (0,1)$,$,$ 0 \!<\!α\!<\!<\!2S \!<\!n $,$ 2S \!<\!<\!<\!<\! 1- \fracα{s} \ cdot \ frac {1} {2^*_ {s}(α)},\ frac {2^*_ {s}(α) - \fracα{s}}}}} $ r = \ frac {2α} {2^*_ {s}(α)} $和$ y \!= \!(y',y',y',y'')\ in \ mathbb {r}^{m} \ times \ times \ times \ times \ mathbb {r}^r}^n-m-m} $。 通过使用Mountain Pass引理和(\ ref {eq0.3}),我们为涉及$ \ Mathbb {r}^{n} $的分数laplacian的双重关键系统获得了一个非平凡的弱解决方案,并以直接的方式具有部分重量。此外,我们将不等式(\ ref {eq0.3})扩展到更通用的形式,目的是研究某些具有部分重量的通用系统,尤其涉及p-laplacian。

In this paper, we establish a new improved Sobolev inequality based on a weighted Morrey space. To be precise, there exists $C=C(n,m,s,α)>0$ such that for any $u,v \in {\dot{H}}^s(\mathbb{R}^{n})$ and for any $θ\in (\barθ,1)$, it holds that \begin{equation} \label{eq0.3} \Big( \int_{ \mathbb{R}^{n} } \frac{ |(uv)(y)|^{\frac{2^*_{s}(α)}{2} } } { |y'|^α } dy \Big)^{ \frac{1}{ 2^*_{s} (α) }} \leq C ||u||_{\dot{H}^s(\mathbb{R}^{n})}^{\fracθ{2}} ||v||_{\dot{H}^s(\mathbb{R}^{n})}^{\fracθ{2}} ||(uv)||^{\frac{1-θ}{2}}_{ L^{1,n-2s+r}(\mathbb{R}^{n},|y'|^{-r}) }, \end{equation} where $s \!\in\! (0,1)$, $0\!<\!α\!<\!2s\!<\!n$, $2s\!<\!m\!<\!n$, $\barθ=\max \{ \frac{2}{2^*_{s}(α)}, 1-\fracα{s}\cdot\frac{1}{2^*_{s}(α)}, \frac{2^*_{s}(α)-\fracα{s}}{2^*_{s}(α)-\frac{2α}{m}} \}$, $r=\frac{2α}{ 2^*_{s}(α) }$ and $y\!=\!(y',y'') \in \mathbb{R}^{m} \times \mathbb{R}^{n-m}$. By using mountain pass lemma and (\ref{eq0.3}), we obtain a nontrivial weak solution to a doubly critical system involving fractional Laplacian in $\mathbb{R}^{n}$ with partial weight in a direct way. Furthermore, we extend inequality (\ref{eq0.3}) to more general forms on purpose of studying some general systems with partial weight, involving p-Laplacian especially.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源