论文标题
文本挖掘形式网络网络在社交媒体中重建对STEM性别差距的公众认识
Text-mining forma mentis networks reconstruct public perception of the STEM gender gap in social media
论文作者
论文摘要
心态重建图绘制了个人如何结构和感知知识,这是通过研究语言及其在人类思想中的认知反射(即精神词典)来展开的地图。文本形式网络(TFMN)是引入玻璃框,用于从文本数据中提取,代表和理解思维的结构,拉丁“ forma mentis”。 TFMN结合了网络科学,心理语言学和大数据,在基准文本中成功识别了相关概念,而没有监督。一旦得到验证,将TFMN应用于科学中性别差距的案例研究,该研究通过最近的研究与扭曲的心态密切相关。这项工作着重于社交媒体的看法和在线话语,分析了10,000条相关推文。 “性别”和“差距”引起了主要的积极看法,具有可信赖/欢乐的情感形象和语义同伴:庆祝成功的女科学家,与工资差异相关的性别差距,并希望未来解决。对“女人”的看法强调了有关性骚扰和刻板印象威胁的讨论(一种隐性认知偏见的一种形式),相对于科学中的女性“牺牲成功的个人技能”。对“人”的重建看法强调了社会使用者对科学中男性优势神话的认识。没有发现“人”的愤怒,这表明以差距为中心的话语对无性别的术语的紧张程度较小。网上没有对“科学家”确定对“科学家”的刻板印象,与现实世界调查不同。总体分析确定在线话语是促进对性别差异的大多数刻板印象,积极/信任的看法,意识到隐式/明确的偏见,并预计将缩小差距。 TFMN为调查不同群体的看法开辟了新的方法,为制定政策提供了详细的数据信息。
Mindset reconstruction maps how individuals structure and perceive knowledge, a map unfolded here by investigating language and its cognitive reflection in the human mind, i.e. the mental lexicon. Textual forma mentis networks (TFMN) are glass boxes introduced for extracting, representing and understanding mindsets' structure, in Latin "forma mentis", from textual data. Combining network science, psycholinguistics and Big Data, TFMNs successfully identified relevant concepts, without supervision, in benchmark texts. Once validated, TFMNs were applied to the case study of the gender gap in science, which was strongly linked to distorted mindsets by recent studies. Focusing over social media perception and online discourse, this work analysed 10,000 relevant tweets. "Gender" and "gap" elicited a mostly positive perception, with a trustful/joyous emotional profile and semantic associates that: celebrated successful female scientists, related gender gap to wage differences, and hoped for a future resolution. The perception of "woman" highlighted discussion about sexual harassment and stereotype threat (a form of implicit cognitive bias) relative to women in science "sacrificing personal skills for success". The reconstructed perception of "man" highlighted social users' awareness of the myth of male superiority in science. No anger was detected around "person", suggesting that gap-focused discourse got less tense around genderless terms. No stereotypical perception of "scientist" was identified online, differently from real-world surveys. The overall analysis identified the online discourse as promoting a mostly stereotype-free, positive/trustful perception of gender disparity, aware of implicit/explicit biases and projected to closing the gap. TFMNs opened new ways for investigating perceptions in different groups, offering detailed data-informed grounding for policy making.