论文标题
Lyapunov神经网络的形式合成
Formal Synthesis of Lyapunov Neural Networks
论文作者
论文摘要
我们提出了一种自动合成Lyapunov函数的自动和正式合理方法,以实现自动非线性系统的渐近稳定性。传统方法要么是分析性的,需要手动努力,要么是数值的,但缺乏正式的健全性。 Lyapunov函数的符号计算方法在介于两者之间,提供正式的保证,但通常是半自动的,因为它们依靠用户提供适当的功能模板。我们提出了一种使用机器学习$ - $完全自动自动$ $的Lyapunov函数的方法,同时还可以使用满意度模型理论(SMT)提供正式的保证$ - $。我们采用反例引导的方法,其中数值学习者和符号验证者相互作用以构建可证明正确的Lyapunov神经网络(LNNS)。学习者训练一个满足Lyapunov标准在样本集上渐近稳定性标准的神经网络;验证者通过smt求解证明了对整个域上满足标准或用反例设置的样本。我们的方法支持具有多项式激活功能以及多个深度和宽度的神经网络,这些神经网络显示出广泛的学习能力。我们在几个非平凡的基准测试中演示了我们的方法,并将其与基于数值优化的方法,基于符号模板的方法和基于同源LNN的方法相比。我们的方法比替代方案更快地合成Lyapunov的功能,但提供更强或同等的保证。
We propose an automatic and formally sound method for synthesising Lyapunov functions for the asymptotic stability of autonomous non-linear systems. Traditional methods are either analytical and require manual effort or are numerical but lack of formal soundness. Symbolic computational methods for Lyapunov functions, which are in between, give formal guarantees but are typically semi-automatic because they rely on the user to provide appropriate function templates. We propose a method that finds Lyapunov functions fully automatically$-$using machine learning$-$while also providing formal guarantees$-$using satisfiability modulo theories (SMT). We employ a counterexample-guided approach where a numerical learner and a symbolic verifier interact to construct provably correct Lyapunov neural networks (LNNs). The learner trains a neural network that satisfies the Lyapunov criteria for asymptotic stability over a samples set; the verifier proves via SMT solving that the criteria are satisfied over the whole domain or augments the samples set with counterexamples. Our method supports neural networks with polynomial activation functions and multiple depth and width, which display wide learning capabilities. We demonstrate our method over several non-trivial benchmarks and compare it favourably against a numerical optimisation-based approach, a symbolic template-based approach, and a cognate LNN-based approach. Our method synthesises Lyapunov functions faster and over wider spatial domains than the alternatives, yet providing stronger or equal guarantees.