论文标题

文本对小型企业默认预测的价值:一种深度学习方法

The value of text for small business default prediction: A deep learning approach

论文作者

Stevenson, Matthew, Mues, Christophe, Bravo, Cristián

论文摘要

与消费者贷款相比,微型,中小型企业(MSME)信用风险建模特别具有挑战性,因为通常没有相同的信息来源。因此,贷款官员提供文本贷款评估以减轻有限的数据可用性是标准政策。反过来,信贷专家将与任何可用的标准信用数据一起分析此声明。在我们的论文中,我们利用深度学习和自然语言处理领域(NLP)的最新进展,包括BERT(来自变形金刚的双向编码器)模型,以从贷方提供的60 000个文本评估中提取信息。我们考虑了AUC(接收器操作特征曲线下的区域)和Brier得分指标的性能,并发现单独的文本对于预测默认值非常有效。但是,当与传统数据结合使用时,它不会产生其他预测能力,并且性能取决于文本的长度。但是,我们提出的深度学习模型确实对文本的质量确实很强,因此适合部分自动化MSME贷款过程。我们还展示了贷款评估的内容如何影响绩效,这使我们对收集未来MSME贷款评估的新策略提出了一系列建议。

Compared to consumer lending, Micro, Small and Medium Enterprise (mSME) credit risk modelling is particularly challenging, as, often, the same sources of information are not available. Therefore, it is standard policy for a loan officer to provide a textual loan assessment to mitigate limited data availability. In turn, this statement is analysed by a credit expert alongside any available standard credit data. In our paper, we exploit recent advances from the field of Deep Learning and Natural Language Processing (NLP), including the BERT (Bidirectional Encoder Representations from Transformers) model, to extract information from 60 000 textual assessments provided by a lender. We consider the performance in terms of the AUC (Area Under the receiver operating characteristic Curve) and Brier Score metrics and find that the text alone is surprisingly effective for predicting default. However, when combined with traditional data, it yields no additional predictive capability, with performance dependent on the text's length. Our proposed deep learning model does, however, appear to be robust to the quality of the text and therefore suitable for partly automating the mSME lending process. We also demonstrate how the content of loan assessments influences performance, leading us to a series of recommendations on a new strategy for collecting future mSME loan assessments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源