论文标题

非常规储层岩石中的气体相对渗透性

Gas relative permeability in unconventional reservoir rocks

论文作者

Ghanbarian, Behzad, Liang, Feng, Liu, Hui-Hai

论文摘要

气体相对渗透率的准确建模在石油和天然气勘探,非常规储层的生产和恢复方面具有实际应用。在这项研究中,我们应用了从渗透理论中的有效中等近似(EMA)和通用幂律缩放中的概念。尽管EMA已成功地用于估计常规多孔介质中的相对渗透性,但据我们所知,它在非常规储层岩石上的应用尚未得到解决。因此,这项研究的主要目的是评估EMA的效率,结合渗透理论的通用幂律缩放,​​以估计气体相对渗透率从孔径分布和孔连接性中。我们认为气流主要由两个并联(1)液压流和(2)分子流的两个主要机制控制。然后,我们应用EMA来确定有效的电导率,从而在较高的气体饱和度处进行气体相对渗透率,以及在较低气体饱和值下渗透理论的普遍尺度。与文献中的两个孔网模拟和六个实验测量的比较表明,在没有微裂纹的情况下,所提出的模型在页岩和紧密的多孔岩石中估计气体相对渗透率合理。更具体地说,我们发现,从渗透理论到EMA的交叉点饱和度是非宇宙的。交叉气体饱和度的值是孔隙空间特征(例如孔径分布宽度和关键气体饱和度)的函数。这意味着人们应该期望跨界气体饱和度从一个岩石样品到另一种岩石样品有所不同。

Accurate modeling of gas relative permeability has practical applications in oil and gas exploration, production and recovery of unconventional reservoirs. In this study, we apply concepts from the effective-medium approximation (EMA) and universal power-law scaling from percolation theory. Although the EMA has been successfully used to estimate relative permeability in conventional porous media, to the best of our knowledge, its applications to unconventional reservoir rocks have not been addressed yet. The main objective of this study, therefore, is to evaluate the efficiency of EMA, in combination with universal power-law scaling from percolation theory, in estimating gas relative permeability from pore size distribution and pore connectivity. We presume that gas flow is mainly controlled by two main mechanisms contributing in parallel (1) hydraulic flow and (2) molecular flow. We then apply the EMA to determine effective conductances and, consequently, gas relative permeability at higher gas saturations, and the universal scaling from percolation theory at lower gas saturation values. Comparisons with two pore-network simulations and six experimental measurements from the literature show that, in the absence of microfractures, the proposed model estimates gas relative permeability reasonably well in shales and tight porous rocks. More specifically, we found that the crossover point, gas saturation at which transport crosses from percolation theory to the EMA, is non-universal. The value of crossover gas saturation is a function of pore space characteristics such as pore size distribution broadness and critical gas saturation. This means that one should expect the crossover gas saturation to vary from one rock sample to another.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源