论文标题
实时SOH SOC标识的基于RLSEKF的联合估计过滤器的新更新规则
A New Update Rule of RLSEKF-based Joint-estimation Filters for Real-time SOH SOC Identification
论文作者
论文摘要
为了准确估算电动汽车中使用的锂离子电池的SOC和SOH(EV),我们提出了一种自适应对角线遗忘因子递归最小二平方(ADFF-RLS),以进行准确的电池参数估计。 ADFFRL在现有的DFF-RL中包括两个新建议;第一个是一个激发标签,该标签根据输入数据的动力学改变了DFFRL和EKF的行为。第二个是自动调节,它会根据条件号(CN)自动找到RLS遗忘因子的最佳值。基于此,我们提出了ADFF-RLS和扩展Kalman滤波器(EKF)的联合估计算法。为了验证所提出的算法的准确性,我们使用了混合图案电池电池与动态和静态模式混合的实验数据。此外,我们添加了在EV处测量时发生的当前测量误差,并实现了更接近实际环境的数据。该数据应用于两种常规估计算法(库仑计数,单个EKF),两个联合估计算法(RLS&EKF,DFF-RLS&EKF)和ADFF-RLS&EKF。结果,所提出的算法在各种驾驶模式和实际EV驱动环境中显示出更高的SOC和SOH估计精度,而不是以前的研究。
In order to accurately estimate the SOC and SOH of a lithium-ion battery used in an electric vehicle (EV), we propose an Adaptive Diagonal Forgetting Factor Recursive Least Square (ADFF-RLS) for accurate battery parameter estimation. ADFFRLS includes two new proposals in the existing DFF-RLS; The first is an excitation tag that changes the behavior of the DFFRLS and the EKF according to the dynamics of the input data. The second is auto-tuning that automatically finds the optimal value of RLS forgetting factor based on condition number (CN). Based on this, we proposed a joint estimation algorithm of ADFF-RLS and Extended Kalman Filter (EKF). To verify the accuracy of the proposed algorithm, we used experimental data of hybrid pattern battery cells mixed with dynamic and static patterns. In addition, we added a current measurement error that occurs when measuring at EV, and realized data that is closer to actual environment. This data was applied to two conventional estimation algorithms (Coulomb counting, Single EKF), two joint estimation algorithms (RLS & EKF, DFF-RLS & EKF) and ADFF-RLS & EKF. As a result, the proposed algorithm showed higher SOC and SOH estimation accuracy in various driving patterns and actual EV driving environment than previous studies.