论文标题

通过对绝热性快捷的加速量子感知

Speed-up Quantum Perceptron via Shortcuts to Adiabaticity

论文作者

Ban, Yue, Chen, Xi, Torrontegui, E., Solano, E., Casanova, J.

论文摘要

量子感知器是量子机学习的基本基础。这是一个多学科领域,结合了量子计算的能力,例如状态叠加和纠缠,与经典的机器学习方案。由与绝热性快捷方式的技术激励,我们提出了一个加速量子感知器,其中感知器上的控制场是成反比的,导致具有Sigmoid激活函数的快速非线性响应。与准绝热方案相比,这会导致总体感知性能更快,以及对控件中缺陷的鲁棒性增强。

The quantum perceptron is a fundamental building block for quantum machine learning. This is a multidisciplinary field that incorporates abilities of quantum computing, such as state superposition and entanglement, to classical machine learning schemes. Motivated by the techniques of shortcuts to adiabaticity, we propose a speed-up quantum perceptron where a control field on the perceptron is inversely engineered leading to a rapid nonlinear response with a sigmoid activation function. This results in faster overall perceptron performance compared to quasi-adiabatic protocols, as well as in enhanced robustness against imperfections in the controls.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源