论文标题

用于参数化非线性流体流量建模的高级混合深层自动编码器

An advanced hybrid deep adversarial autoencoder for parameterized nonlinear fluid flow modelling

论文作者

Cheng, M., Fang, F., Pain, C. C., Navon, I. M.

论文摘要

考虑到传统计算流体动态模拟中产生的高计算成本,近年来已经引入了机器学习方法来进行流动动态模拟。但是,大多数研究主要集中在现有的流体领域学习上,在不同的参数化空间中的时空非线性流体流对时空的非线性流动的预测已被忽略。在这项工作中,我们提出了一个混合深层自动编码器(DAA),以整合生成对抗网络(GAN)和变异自动编码器(VAE),以预测空间和时间空间中的参数化非线性流动。高维输入被卷积编码器中的非线性函数压缩到低代表表示中。这样,在卷积解码器中重建的预测流体流包含高非线性和混乱性的动态流体物理。此外,将低代表表示形式应用于对抗网络进行模型训练和参数优化,从而实现快速计算过程。杂交DAA的能力通过在倒塌示例上的不同输入来证明。数值结果表明,这种混合DAA已成功捕获了时空流动特征,CPU加速了三个数量级。有希望的结果表明,混合DAA可以在将来有效,准确地预测复杂流中发挥关键作用。

Considering the high computation cost produced in conventional computation fluid dynamic simulations, machine learning methods have been introduced to flow dynamic simulations in recent years. However, most of studies focus mainly on existing fluid fields learning, the prediction of spatio-temporal nonlinear fluid flows in varying parameterized space has been neglected. In this work, we propose a hybrid deep adversarial autoencoder (DAA) to integrate generative adversarial network (GAN) and variational autoencoder (VAE) for predicting parameterized nonlinear fluid flows in spatial and temporal space. High-dimensional inputs are compressed into the low-representation representations by nonlinear functions in a convolutional encoder. In this way, the predictive fluid flows reconstructed in a convolutional decoder contain the dynamic flow physics of high nonlinearity and chaotic nature. In addition, the low-representation representations are applied into the adversarial network for model training and parameter optimization, which enables a fast computation process. The capability of the hybrid DAA is demonstrated by varying inputs on a water collapse example. Numerical results show that this hybrid DAA has successfully captured the spatio-temporal flow features with CPU speed-up of three orders of magnitude. Promising results suggests that the hybrid DAA can play a critical role in efficiently and accurately predicting complex flows in future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源