论文标题
使用来自深神经网络的组件对象检测的空间融合对地面向空地的广泛搜索和检测
Broad Area Search and Detection of Surface-to-Air Missile Sites Using Spatial Fusion of Component Object Detections from Deep Neural Networks
论文作者
论文摘要
在这里,我们证明了如何在空间融合较大,更复杂且包含的特征的多个组成型或组件对象的深神经网络(DNN)检测中,以改善较大复杂特征的搜索,检测和检测(排名)。首先,从空间聚类算法计算得出的分数归一化为参考空间,因此它们独立于图像分辨率和DNN输入芯片大小。然后,融合了来自各个组件对象的多尺度DNN检测,以改善较大复杂特征DNN检测的检测和检索。我们证明了这种方法的实用性,用于广泛的区域搜索和检测地表到空气导弹(SAM)地点,该地点(SAM)在中国的大约90,000 km^2研究区域的出现率(仅16个地点)。结果表明,多尺度组件-Object DNN检测的空间融合可以将SAM站点的检测错误率降低$ 85%,同时仍保持100%的召回率。此处展示的新型空间融合方法可以轻松扩展到大规模遥感图像数据集中的其他各种具有挑战性的对象搜索和检测问题。
Here we demonstrate how Deep Neural Network (DNN) detections of multiple constitutive or component objects that are part of a larger, more complex, and encompassing feature can be spatially fused to improve the search, detection, and retrieval (ranking) of the larger complex feature. First, scores computed from a spatial clustering algorithm are normalized to a reference space so that they are independent of image resolution and DNN input chip size. Then, multi-scale DNN detections from various component objects are fused to improve the detection and retrieval of DNN detections of a larger complex feature. We demonstrate the utility of this approach for broad area search and detection of Surface-to-Air Missile (SAM) sites that have a very low occurrence rate (only 16 sites) over a ~90,000 km^2 study area in SE China. The results demonstrate that spatial fusion of multi-scale component-object DNN detections can reduce the detection error rate of SAM Sites by $>$85% while still maintaining a 100% recall. The novel spatial fusion approach demonstrated here can be easily extended to a wide variety of other challenging object search and detection problems in large-scale remote sensing image datasets.