论文标题

静止状态fMRI分析的时空图卷积

Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis

论文作者

Gadgil, Soham, Zhao, Qingyu, Pfefferbaum, Adolf, Sullivan, Edith V., Adeli, Ehsan, Pohl, Kilian M.

论文摘要

静息状态fMRI(RS-FMRI)的血氧级依赖性(粗体)信号记录了大脑内部功能网络的时间动力学。但是,应用于RS-FMRI的现有深度学习方法要么忽略网络中不同大脑区域之间的功能依赖性,要么丢弃大脑活动时间动力学中的信息。为了克服这些缺点,我们建议在时空图的背景下建立功能连接网络。我们在大胆时间序列的简短子序列上训练时空图卷积网络(ST-GCN),以模拟功能连接的非平稳性质。同时,该模型了解了ST-GCN中图边的重要性,以深入了解有助于预测的功能连接性。在分析人类连接组项目的RS-FMRI(HCP,n = 1,091)和青春期酒精和神经发育联盟(Ncanda,n = 773)时,ST-GCN比预测性别和基于大胆信号的性别和年龄的常见方法要准确。此外,根据神经科学文献,大脑区域和功能连接显着促进我们模型的预测是重要的标记。

The Blood-Oxygen-Level-Dependent (BOLD) signal of resting-state fMRI (rs-fMRI) records the temporal dynamics of intrinsic functional networks in the brain. However, existing deep learning methods applied to rs-fMRI either neglect the functional dependency between different brain regions in a network or discard the information in the temporal dynamics of brain activity. To overcome those shortcomings, we propose to formulate functional connectivity networks within the context of spatio-temporal graphs. We train a spatio-temporal graph convolutional network (ST-GCN) on short sub-sequences of the BOLD time series to model the non-stationary nature of functional connectivity. Simultaneously, the model learns the importance of graph edges within ST-GCN to gain insight into the functional connectivities contributing to the prediction. In analyzing the rs-fMRI of the Human Connectome Project (HCP, N=1,091) and the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA, N=773), ST-GCN is significantly more accurate than common approaches in predicting gender and age based on BOLD signals. Furthermore, the brain regions and functional connections significantly contributing to the predictions of our model are important markers according to the neuroscience literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源