论文标题
KFNET:使用Kalman过滤学习临时摄像机重新定位
KFNet: Learning Temporal Camera Relocalization using Kalman Filtering
论文作者
论文摘要
时间摄像机重新定位依次估算每个视频框架的姿势,而不是一声重新定位,而静态式重新定位为静止图像。即使考虑到时间依赖性,当前的时间重新定位方法在准确性方面通常仍然不足以表现最先进的一击方法。在这项工作中,我们通过使用合并Kalman过滤(KFNET)进行在线摄像机重新定位的网络体系结构来改善时间重新定位方法。特别是,KFNET将场景坐标回归问题扩展到时域,以递归建立姿势确定的2D和3D对应关系。网络体系结构设计和损失公式基于贝叶斯学习的背景下的卡尔曼过滤。对多个稳定基准测试的广泛实验表明,在一击和时间重新定位方法的顶部,kfnet的高精度。我们的代码在https://github.com/zlthinker/kfnet上发布。
Temporal camera relocalization estimates the pose with respect to each video frame in sequence, as opposed to one-shot relocalization which focuses on a still image. Even though the time dependency has been taken into account, current temporal relocalization methods still generally underperform the state-of-the-art one-shot approaches in terms of accuracy. In this work, we improve the temporal relocalization method by using a network architecture that incorporates Kalman filtering (KFNet) for online camera relocalization. In particular, KFNet extends the scene coordinate regression problem to the time domain in order to recursively establish 2D and 3D correspondences for the pose determination. The network architecture design and the loss formulation are based on Kalman filtering in the context of Bayesian learning. Extensive experiments on multiple relocalization benchmarks demonstrate the high accuracy of KFNet at the top of both one-shot and temporal relocalization approaches. Our codes are released at https://github.com/zlthinker/KFNet.