论文标题
在海森堡集团上的多边界最佳运输
Multi-marginal optimal transport on the Heisenberg group
论文作者
论文摘要
我们考虑了在海森堡组上对齐几个紧凑型边际边缘的多边界最佳运输,以最大程度地降低总成本,我们认为这是从边际点到他们的男性中心的平方carnot-carthéodory距离的总和。在某些技术假设下,我们证明了最佳地图的存在和独特性。我们还指出了几个相关的开放问题。
We consider the multi-marginal optimal transport of aligning several compactly supported marginals on the Heisenberg group to minimize the total cost, which we take to be the sum of the squared Carnot-Carathéodory distances from the marginal points to their barycenter. Under certain technical hypotheses, we prove existence and uniqueness of optimal maps. We also point out several related open questions.