论文标题
前往几何有限双曲线孔的尖端,以及在常规覆盖物中的封闭测量学等分
Excursions to the cusps for geometrically finite hyperbolic orbifolds, and equidistribution of closed geodesics in regular covers
论文作者
论文摘要
我们给出了针对非元素几何有限双曲线孔的量度收敛到最大熵的唯一度量的标准。我们给出一个熵标准,控制质量逃脱到Orbifold的尖端。使用此标准,我们证明了有关封闭地球学在这种Orbifold上的封闭测量学系列的分布的新结果,作为推论,我们证明了封闭的大地测量学的等分分配,最高长度为一定长度,在几何有限的轨道上的常规覆盖范围内。
We give a finitary criterion for the convergence of measures on non-elementary geometrically finite hyperbolic orbifolds to the unique measure of maximal entropy. We give an entropy criterion controlling escape of mass to the cusps of the orbifold. Using this criterion we prove new results on the distribution of collections of closed geodesics on such orbifold, and as a corollary we prove equidistribution of closed geodesics up to a certain length in amenable regular covers of geometrically finite orbifolds.