论文标题
混淆互连:低成本和弹性的全芯片布局伪装
Obfuscating the Interconnects: Low-Cost and Resilient Full-Chip Layout Camouflaging
论文作者
论文摘要
布局伪装可以保护现代电路的知识产权。但是,大多数先前的艺术都会产生过多的布局开销,因此需要自定义主动设备制造过程,即前端线(FEOL)。结果,伪装通常是选择性地应用的,最终可能破坏其弹性。在这里,我们提出了一种低成本和通用的方案 - 最终可以实现全芯片伪装,而无需预订。我们的方案是基于混淆互连的,即通过设计时间处理真实和虚线和VIA的设计时间处理。为此,我们实施了以beol为中心的掺杂细胞,并使用工业工具开发CAD流。我们的方案可以应用于任何设计和技术节点,而无需进行Feol级别的修改。考虑到其以Beol为中心的性质,我们主张将我们的计划与拆分制造一起应用,以防止不受信任的晶圆厂。我们在物理,DRC-CLEAN布局水平上评估了各种设计的计划。我们的计划的成本明显低于大多数先前的艺术。值得注意的是,对于完全伪装的布局,我们观察到平均功率,性能和面积开销分别为24.96%,19.06%和32.55%。我们进行了一项彻底的安全研究,以解决与不信任的Feol Fab(接近攻击)和恶意最终用户(基于SAT的攻击)有关的威胁(攻击)。一个经验的关键发现是,只有像我们这样的大规模伪装方案才能确保强大的基于SAT的攻击。另一个关键发现是,我们的方案妨碍了以布置和路由为中心的接近性攻击。正确的连接减少了7.47倍,对于此类攻击,复杂性分别增加了24.15倍。
Layout camouflaging can protect the intellectual property of modern circuits. Most prior art, however, incurs excessive layout overheads and necessitates customization of active-device manufacturing processes, i.e., the front-end-of-line (FEOL). As a result, camouflaging has typically been applied selectively, which can ultimately undermine its resilience. Here, we propose a low-cost and generic scheme---full-chip camouflaging can be finally realized without reservations. Our scheme is based on obfuscating the interconnects, i.e., the back-end-of-line (BEOL), through design-time handling for real and dummy wires and vias. To that end, we implement custom, BEOL-centric obfuscation cells, and develop a CAD flow using industrial tools. Our scheme can be applied to any design and technology node without FEOL-level modifications. Considering its BEOL-centric nature, we advocate applying our scheme in conjunction with split manufacturing, to furthermore protect against untrusted fabs. We evaluate our scheme for various designs at the physical, DRC-clean layout level. Our scheme incurs a significantly lower cost than most of the prior art. Notably, for fully camouflaged layouts, we observe average power, performance, and area overheads of 24.96%, 19.06%, and 32.55%, respectively. We conduct a thorough security study addressing the threats (attacks) related to untrustworthy FEOL fabs (proximity attacks) and malicious end-users (SAT-based attacks). An empirical key finding is that only large-scale camouflaging schemes like ours are practically secure against powerful SAT-based attacks. Another key finding is that our scheme hinders both placement- and routing-centric proximity attacks; correct connections are reduced by 7.47X, and complexity is increased by 24.15X, respectively, for such attacks.