论文标题
在Lehn,Lehn,Sorger和Van Straten的符号八倍上
On the period of Lehn, Lehn, Sorger, and van Straten's symplectic eightfold
论文作者
论文摘要
对于与不包含平面的立方体四倍y相关的不可还原性全态符合性的八倍z,我们表明从h^4_prim(y)到h^2_prim(z)的天然Abel-jacobi图是hodge等轴测图。我们用Y的K3类别A的Mukai晶格描述了完整的H^2(Z)。我们给出了数值条件,使Z在K3表面或HILB^4(K3)(K3)上具有对束带的模量空间。我们提出了一个关于如何使用Z产生从A到K3表面派生类别的等价的猜想。
For the irreducible holomorphic symplectic eightfold Z associated to a cubic fourfold Y not containing a plane, we show that a natural Abel-Jacobi map from H^4_prim(Y) to H^2_prim(Z) is a Hodge isometry. We describe the full H^2(Z) in terms of the Mukai lattice of the K3 category A of Y. We give numerical conditions for Z to be birational to a moduli space of sheaves on a K3 surface or to Hilb^4(K3). We propose a conjecture on how to use Z to produce equivalences from A to the derived category of a K3 surface.