论文标题
原子较薄的谐振器中动态增强的应变
Dynamically-enhanced strain in atomically thin resonators
论文作者
论文摘要
石墨烯和相关的二维(2D)材料相关的机械,电子,光学和语音性质。因此,对于将其基本激发(激发子,声子)与宏观机械模式搭配的混合系统来说,2D材料是有希望的。与较大的体系结构相比,这些内置系统可能会产生增强的应变介导的耦合,例如,包含一个与纳米机械谐振器耦合的单个量子发射极。在这里,使用原始单层石墨烯鼓上的微拉曼光谱法,我们证明了石墨烯的宏观弯曲振动诱导动力学光学声子软化。这种软化是动态诱导的拉伸应变的明确指纹,可在强的非线性驾驶下达到$ \ mathbf {\ times 10^{ - 4}} $。这种非线性增强的应变超过了具有相同根平方(RMS)幅度的谐波振动预测的值,多个数量级。我们的工作对2D材料和相关异质结构中光 - 物质相互作用的动态应变工程和动态应变介导的控制有希望。
Graphene and related two-dimensional (2D) materials associate remarkable mechanical, electronic, optical and phononic properties. As such, 2D materials are promising for hybrid systems that couple their elementary excitations (excitons, phonons) to their macroscopic mechanical modes. These built-in systems may yield enhanced strain-mediated coupling compared to bulkier architectures, e.g., comprising a single quantum emitter coupled to a nano-mechanical resonator. Here, using micro-Raman spectroscopy on pristine monolayer graphene drums, we demonstrate that the macroscopic flexural vibrations of graphene induce dynamical optical phonon softening. This softening is an unambiguous fingerprint of dynamically-induced tensile strain that reaches values up to $\mathbf{\approx 4 \times 10^{-4}}$ under strong non-linear driving. Such non-linearly enhanced strain exceeds the values predicted for harmonic vibrations with the same root mean square (RMS) amplitude by more than one order of magnitude. Our work holds promise for dynamical strain engineering and dynamical strain-mediated control of light-matter interactions in 2D materials and related heterostructures.