论文标题
步态分析的情感认可:当前的研究和未来方向
Emotion Recognition From Gait Analyses: Current Research and Future Directions
论文作者
论文摘要
人体步态是指每日运动不仅代表移动性,而且还可以用人类观察者或计算机来识别步行者。最近的研究表明,步态甚至传达了有关沃克情绪的信息。不同情绪状态的个人可能会显示出不同的步态模式。各种情绪和步态模式之间的映射为自动情绪识别提供了新的来源。与传统的情感检测生物识别技术(例如面部表达,言语和生理参数)相比,步态是可以观察到的,更难以模仿,并且需要从该主题中进行较少的合作。这些优势使步态成为情感检测的有前途的来源。本文回顾了有关基于步态的情绪检测的当前研究,尤其是关于如何通过不同情绪状态影响步态参数以及如何通过不同的步态模式识别情绪状态的研究。我们专注于情感识别过程中应用的详细方法和技术:数据收集,预处理和分类。最后,我们讨论了使用智能计算和大数据的最先进技术的状态来讨论高效有效的基于步态的情绪识别的可能发展。
Human gait refers to a daily motion that represents not only mobility, but it can also be used to identify the walker by either human observers or computers. Recent studies reveal that gait even conveys information about the walker's emotion. Individuals in different emotion states may show different gait patterns. The mapping between various emotions and gait patterns provides a new source for automated emotion recognition. Compared to traditional emotion detection biometrics, such as facial expression, speech and physiological parameters, gait is remotely observable, more difficult to imitate, and requires less cooperation from the subject. These advantages make gait a promising source for emotion detection. This article reviews current research on gait-based emotion detection, particularly on how gait parameters can be affected by different emotion states and how the emotion states can be recognized through distinct gait patterns. We focus on the detailed methods and techniques applied in the whole process of emotion recognition: data collection, preprocessing, and classification. At last, we discuss possible future developments of efficient and effective gait-based emotion recognition using the state of the art techniques on intelligent computation and big data.