论文标题

匹配文本与深度共同信息估计

Matching Text with Deep Mutual Information Estimation

论文作者

Zhou, Xixi, Li, Chengxi, Bu, Jiajun, Yao, Chengwei, Shi, Keyue, Yu, Zhi, Yu, Zhou

论文摘要

文本匹配是一种核心自然语言处理研究问题。如何保留有关内容和结构信息的足够信息是一个重要的挑战。在本文中,我们提出了一种神经方法,用于通用文本与已包含的深度共同信息估计。我们的方法,与深度信息Max(TIM)匹配的文本匹配,与无监督学习表示形式的过程集成在一起,通过最大程度地匹配神经网络的输入和输出之间的文本信息。我们同时使用全球和本地共同信息来学习文本表示。我们在几个任务上评估了文本匹配方法,包括自然语言推断,释义识别和答案选择。与最先进的方法相比,实验表明,我们与共同信息估计集成的方法学会了更好的文本表示形式,并实现了文本匹配任务的更好实验结果,而无需对外部数据进行预处理。

Text matching is a core natural language processing research problem. How to retain sufficient information on both content and structure information is one important challenge. In this paper, we present a neural approach for general-purpose text matching with deep mutual information estimation incorporated. Our approach, Text matching with Deep Info Max (TIM), is integrated with a procedure of unsupervised learning of representations by maximizing the mutual information between text matching neural network's input and output. We use both global and local mutual information to learn text representations. We evaluate our text matching approach on several tasks including natural language inference, paraphrase identification, and answer selection. Compared to the state-of-the-art approaches, the experiments show that our method integrated with mutual information estimation learns better text representation and achieves better experimental results of text matching tasks without exploiting pretraining on external data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源