论文标题

ITAML:一种增量任务不合时宜的元学习方法

iTAML: An Incremental Task-Agnostic Meta-learning Approach

论文作者

Rajasegaran, Jathushan, Khan, Salman, Hayat, Munawar, Khan, Fahad Shahbaz, Shah, Mubarak

论文摘要

随着经验的增长,人类可以不断学习新知识。相比之下,在深度神经网络中以前的学习在接受新任务的培训时会很快消失。在本文中,我们可以通过学习一组既不针对旧任务也不具体的广义参数来避免这种问题。在这种追求中,我们介绍了一种新颖的元学习方法,该方法旨在保持所有遇到的任务之间的均衡。这是通过新的元更新规则来确保的,避免了灾难性的遗忘。与以前的元学习技术相比,我们的方法是任务不可能的。当提供连续的数据时,我们的模型会自动识别任务,并仅通过一个更新而迅速适应它。我们在集体开发设置的五个数据集上进行了广泛的实验,从而对最先进的方法进行了显着改进(例如,具有10个增量任务的CIFAR100上的21.3%提升)。具体而言,在通常证明逐渐学习困难情况的大规模数据集上,我们的方法分别在ImageNet和MS-CELEB数据集上分别提供了最高的19.1%和7.4%。

Humans can continuously learn new knowledge as their experience grows. In contrast, previous learning in deep neural networks can quickly fade out when they are trained on a new task. In this paper, we hypothesize this problem can be avoided by learning a set of generalized parameters, that are neither specific to old nor new tasks. In this pursuit, we introduce a novel meta-learning approach that seeks to maintain an equilibrium between all the encountered tasks. This is ensured by a new meta-update rule which avoids catastrophic forgetting. In comparison to previous meta-learning techniques, our approach is task-agnostic. When presented with a continuum of data, our model automatically identifies the task and quickly adapts to it with just a single update. We perform extensive experiments on five datasets in a class-incremental setting, leading to significant improvements over the state of the art methods (e.g., a 21.3% boost on CIFAR100 with 10 incremental tasks). Specifically, on large-scale datasets that generally prove difficult cases for incremental learning, our approach delivers absolute gains as high as 19.1% and 7.4% on ImageNet and MS-Celeb datasets, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源