论文标题

通过顶点 - 划线盖3-均匀的超图形。

Cover 3-uniform hypergraphs by vertex-disjoint tight paths

论文作者

Han, Jie

论文摘要

令$ h $为$ n $ vertex 3均匀的超图,使每对顶点至少在$ n/3+o(n)$边缘中。我们表明,$ h $包含两个顶点 - 局关系的紧密路径,它们的工会涵盖了$ h $的顶点集。这里的数量二是最好的,并且学位条件在渐近上最好。该结果还具有解释为\ emph {缺陷问题},最近由Nenadov,Sudakov和Wagner提出:每个这样的$ H $都可以通过添加最多两个顶点,并将所有三元组合在一起。

Let $H$ be an $n$-vertex 3-uniform hypergraph such that every pair of vertices is in at least $n/3+o(n)$ edges. We show that $H$ contains two vertex-disjoint tight paths whose union covers the vertex set of $H$. The quantity two here is best possible and the degree condition is asymptotically best possible. This result also has an interpretation as the \emph{deficiency problems}, recently introduced by Nenadov, Sudakov and Wagner: every such $H$ can be made Hamiltonian by adding at most two vertices and all triples intersecting them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源