论文标题

DeepCrashtest:将Dashcam视频变成自动驾驶系统的虚拟崩溃测试

DeepCrashTest: Turning Dashcam Videos into Virtual Crash Tests for Automated Driving Systems

论文作者

Bashetty, Sai Krishna, Amor, Heni Ben, Fainekos, Georgios

论文摘要

本文的目的是生成具有现实世界碰撞场景的模拟,以训练和测试自动驾驶汽车。我们使用上传在Internet上的许多Dashcam崩溃视频来提取有价值的碰撞数据并在模拟器中重新创建崩溃方案。我们使用模块化方法从未知和未校准的单眼相机源录制的视频中提取3D车辆轨迹的问题。论文提供了工作的架构和演示视频以及开源实施。

The goal of this paper is to generate simulations with real-world collision scenarios for training and testing autonomous vehicles. We use numerous dashcam crash videos uploaded on the internet to extract valuable collision data and recreate the crash scenarios in a simulator. We tackle the problem of extracting 3D vehicle trajectories from videos recorded by an unknown and uncalibrated monocular camera source using a modular approach. A working architecture and demonstration videos along with the open-source implementation are provided with the paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源