论文标题

厨师太多:贝叶斯推断要协调多代理协作

Too many cooks: Bayesian inference for coordinating multi-agent collaboration

论文作者

Wang, Rose E., Wu, Sarah A., Evans, James A., Tenenbaum, Joshua B., Parkes, David C., Kleiman-Weiner, Max

论文摘要

协作要求代理人即时协调其行为,有时会合作解决一项任务,而其他时候将其分为子任务以并行处理。人类协作能力的基础是诚信理论,即推断驱动他人行动的隐藏心理状态的能力。在这里,我们开发了贝叶斯代表团,这是一种具有这些能力的分散的多机构学习机制。贝叶斯代表团使代理商能够通过反计划快速推断他人的隐藏意图。我们在一套受烹饪问题启发的多代理马尔可夫决策过程中测试贝叶斯代表团。在这些任务上,拥有贝叶斯代表团的代理人协调了他们的高级计划(例如,他们应该从事什么子任务)及其低级行动(例如,避免以彼此的方式获得)。在自我竞争评估中,贝叶斯代表团的表现优于替代算法。贝叶斯代表团也是一个有能力的临时合作者,即使没有先前的经验,也可以成功与其他代理类型进行协调。最后,在一个行为实验中,我们表明贝叶斯代表团对他人的意图进行了类似的推论。总之,这些结果证明了贝叶斯代表团在分散的多代理协作中的力量。

Collaboration requires agents to coordinate their behavior on the fly, sometimes cooperating to solve a single task together and other times dividing it up into sub-tasks to work on in parallel. Underlying the human ability to collaborate is theory-of-mind, the ability to infer the hidden mental states that drive others to act. Here, we develop Bayesian Delegation, a decentralized multi-agent learning mechanism with these abilities. Bayesian Delegation enables agents to rapidly infer the hidden intentions of others by inverse planning. We test Bayesian Delegation in a suite of multi-agent Markov decision processes inspired by cooking problems. On these tasks, agents with Bayesian Delegation coordinate both their high-level plans (e.g. what sub-task they should work on) and their low-level actions (e.g. avoiding getting in each other's way). In a self-play evaluation, Bayesian Delegation outperforms alternative algorithms. Bayesian Delegation is also a capable ad-hoc collaborator and successfully coordinates with other agent types even in the absence of prior experience. Finally, in a behavioral experiment, we show that Bayesian Delegation makes inferences similar to human observers about the intent of others. Together, these results demonstrate the power of Bayesian Delegation for decentralized multi-agent collaboration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源