论文标题

引力波和二进制中子星星合并的质量喷射:旋转方向的效果

Gravitational waves and mass ejecta from binary neutron star mergers: Effect of the spin orientation

论文作者

Chaurasia, Swami Vivekanandji, Dietrich, Tim, Ujevic, Maximiliano, Hendriks, Kai, Dudi, Reetika, Fabbri, Francesco Maria, Tichy, Wolfgang, Brügmann, Bernd

论文摘要

我们通过研究旋转方向对二进制中性星星合并期间动力学,重力波发射和质量射出的影响,继续研究二进制中子星参数空间。我们使用多个分辨率模拟七个不同的配置,以允许合理的错误评估。由于设置的特殊选择,五种配置显示了进动效果,其中两个显示了轨道平面的进液(“摇摆”),而三个构型显示了“摇动”运动,即轨道角动量没有进攻,而轨道平面则沿着轨道的角动力轴移动。考虑到质量的射出,我们发现进攻系统可以具有各向异性的质量排斥,这可能会导致研究系统的最终残余踢球40 \ rm km/s $。此外,对于所选的构型,抗调旋旋转会导致比对齐的旋转更大的质量喷射,因此这些构型的电磁对应物可能会更明亮。最后,我们将模拟与进攻,潮汐波形近似imrphenompv2_nrtidalv2进行了比较,并在近似值和我们的数值相对性波形之间找到良好的一致性,而相位差异低于1.2 rad,在最后$ \ \ sim $ \ sim $ \ sim $ \ sim $ \ sim $ \ sim $ \ sim $ \ sim $ 16的引力循环中。

We continue our study of the binary neutron star parameter space by investigating the effect of the spin orientation on the dynamics, gravitational wave emission, and mass ejection during the binary neutron star coalescence. We simulate seven different configurations using multiple resolutions to allow a reasonable error assessment. Due to the particular choice of the setups, five configurations show precession effects, from which two show a precession ("wobbling") of the orbital plane, while three show a "bobbing" motion, i.e., the orbital angular momentum does not precess, while the orbital plane moves along the orbital angular momentum axis. Considering the ejection of mass, we find that precessing systems can have an anisotropic mass ejection, which could lead to a final remnant kick of $\sim 40 \rm km/s$ for the studied systems. Furthermore, for the chosen configurations, antialigned spins lead to larger mass ejecta than aligned spins, so that brighter electromagnetic counterparts could be expected for these configurations. Finally, we compare our simulations with the precessing, tidal waveform approximant IMRPhenomPv2_NRTidalv2 and find good agreement between the approximant and our numerical relativity waveforms with phase differences below 1.2 rad accumulated over the last $\sim$ 16 gravitational wave cycles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源