论文标题
在费米子高斯系统上的近似私人量子通道
Approximate private quantum channels on fermionic Gaussian systems
论文作者
论文摘要
私人量子通道(PQC)将任何量子状态映射到离散和玻色子高斯量子系统的最大混合状态,并且对量子加密任务和量子通道容量问题具有根本性的含义。在本文中,我们介绍了费米子高斯系统(即$ \ varepsilon $ -FPQC)上的近似私人量子通道($ \ varepsilon $ -PQC)的概念,并构建了其明确的Fermionic(Gaussian)私人量子通道。首先,我们建议在费米子高斯系统上有关$ \ varepsilon $ -FPQC的一般结构,相对于schatten $ p $ - norm类,然后我们在跟踪规范中提供了明确的证明。此外,我们研究了一组费米子统一操作员的基数同意在跟踪规范案例中$ \ varepsilon $ -FPQC条件。
The private quantum channel (PQC) maps any quantum state to the maximally mixed state for the discrete as well as the bosonic Gaussian quantum systems, and it has fundamental meaning on the quantum cryptographic tasks and the quantum channel capacity problems. In this paper, we introduce a notion of approximate private quantum channel ($\varepsilon$-PQC) on fermionic Gaussian systems (i.e., $\varepsilon$-FPQC), and construct its explicit form of the fermionic (Gaussian) private quantum channel. First of all, we suggest a general structure for $\varepsilon$-FPQC on the fermionic Gaussian systems with respect to the Schatten $p$-norm class, and then we give an explicit proof of the statement in the trace norm. In addition, we study that the cardinality of a set of fermionic unitary operators agrees on the $\varepsilon$-FPQC condition in the trace norm case.