论文标题
编码空间的线性回拔组件一叶
Linear Pullback components of the space of codimension one foliations
论文作者
论文摘要
$ \ mathbb {p}^n $($ n \ geq 3 $)的整体叶子叶子的空间和度$ d \ geq 2 $ in $ \ mathbb {p}^n $($ n \ geq 3 $)具有不可减至的成分,其一般元素可以写成,其一般元素可以写成uralback $ f^*\ mathcal {f} $,其中$ \ mathcal $ \ nriation $ \ n $ de per n in priatiation a $ d foriatian $ \ mathbb {p}^2 $和$ f:\ mathbb {p}^n \ dashrightarrow \ mathbb {p}^2 $是一般理性线性映射。我们给出了此类组件程度的多项式公式。
The space of holomorphic foliations of codimension one and degree $d\geq 2$ in $\mathbb{P}^n$ ($n\geq 3$) has an irreducible component whose general element can be written as a pullback $F^*\mathcal{F}$, where $\mathcal{F}$ is a general foliation of degree $d$ in $\mathbb{P}^2$ and $F:\mathbb{P}^n\dashrightarrow \mathbb{P}^2$ is a general rational linear map. We give a polynomial formula for the degrees of such components.