论文标题
动机空间的Zeroth P^1稳定的同型捆
The zeroth P^1-stable homotopy sheaf of a motivic space
论文作者
论文摘要
我们在动机同义理论中建立了一种“零度弗洛伊德纳尔通用汽车悬浮定理”。由此,我们推断出有关P^1稳定函数的保守性的结果。 为了建立这些结果,我们展示了如何根据ROST-SCHMID复合物在严格同型不变的捆绑中计算某些回调。这建立了[BY18]的主要猜想,这很容易暗示上述结果。
We establish a kind of "degree zero Freudenthal Gm-suspension theorem" in motivic homotopy theory. From this we deduce results about the conservativity of the P^1-stabilization functor. In order to establish these results, we show how to compute certain pullbacks in the cohomology of a strictly homotopy invariant sheaf in terms of the Rost--Schmid complex. This establishes the main conjecture of [BY18], which easily implies the aforementioned results.