论文标题

一种异质的动力学图神网络方法来量化科学影响

A Heterogeneous Dynamical Graph Neural Networks Approach to Quantify Scientific Impact

论文作者

Zhou, Fan, Xu, Xovee, Li, Ce, Trajcevski, Goce, Zhong, Ting, Zhang, Kunpeng

论文摘要

量化和预测科学著作或单个学者的长期影响对许多政策决策具有重要意义,例如资助建议评估和确定新兴的研究领域。在这项工作中,我们提出了一种基于异构动力学图神经网络(HDGNN)的方法,以明确建模并预测论文和作者的累积影响。 HDGNN通过纳入时间不断发展的特征并捕获归因图的结构特性和引文行为的增长序列来扩展异质GNN。 HDGNN与以前的模型有显着差异,其能力可以动态方式建模节点影响,同时考虑到节点之间的复杂关系。在真实的引文数据集上进行的实验证明了其在预测论文和作者的影响方面的出色表现。

Quantifying and predicting the long-term impact of scientific writings or individual scholars has important implications for many policy decisions, such as funding proposal evaluation and identifying emerging research fields. In this work, we propose an approach based on Heterogeneous Dynamical Graph Neural Network (HDGNN) to explicitly model and predict the cumulative impact of papers and authors. HDGNN extends heterogeneous GNNs by incorporating temporally evolving characteristics and capturing both structural properties of attributed graph and the growing sequence of citation behavior. HDGNN is significantly different from previous models in its capability of modeling the node impact in a dynamic manner while taking into account the complex relations among nodes. Experiments conducted on a real citation dataset demonstrate its superior performance of predicting the impact of both papers and authors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源