论文标题

从推文中整合众包和积极学习以分类工作生活事件

Integrating Crowdsourcing and Active Learning for Classification of Work-Life Events from Tweets

论文作者

Zhao, Yunpeng, Prosperi, Mattia, Lyu, Tianchen, Guo, Yi, Bian, Jiang

论文摘要

社交媒体,尤其是Twitter,正在越来越多地用于研究性分析。在社交媒体研究中,自然语言处理(NLP)技术与基于专家的,手动和定性分析一起使用。但是,社交媒体数据是非结构化的,必须进行复杂的研究以进行研究。手动注释是多个专家评估者必须就每个项目达成共识的最大资源和耗时的过程,但是对于创建用于培训基于NLP的机器学习分类器的金标准数据集至关重要。为了减轻手动注释的负担,但保持其可靠性,我们设计了一条众包管道,并结合了积极的学习策略。我们通过案例研究证明了其有效性,该案例研究确定了来自各个推文的失业事件。我们使用亚马逊机械土耳其人平台从互联网招募注释者,并设计了许多质量控制措施以确保注释准确性。我们评估了4种不同的活跃学习策略(即,最自信,熵,投票熵和Kullback-Leibler Divergence)。积极的学习策略旨在减少达到自动分类表现所需的推文数量。结果表明,众包有助于创建高质量的注释,而主动学习有助于减少所需的推文数量,尽管所测试的策略之间没有实质性的差异。

Social media, especially Twitter, is being increasingly used for research with predictive analytics. In social media studies, natural language processing (NLP) techniques are used in conjunction with expert-based, manual and qualitative analyses. However, social media data are unstructured and must undergo complex manipulation for research use. The manual annotation is the most resource and time-consuming process that multiple expert raters have to reach consensus on every item, but is essential to create gold-standard datasets for training NLP-based machine learning classifiers. To reduce the burden of the manual annotation, yet maintaining its reliability, we devised a crowdsourcing pipeline combined with active learning strategies. We demonstrated its effectiveness through a case study that identifies job loss events from individual tweets. We used Amazon Mechanical Turk platform to recruit annotators from the Internet and designed a number of quality control measures to assure annotation accuracy. We evaluated 4 different active learning strategies (i.e., least confident, entropy, vote entropy, and Kullback-Leibler divergence). The active learning strategies aim at reducing the number of tweets needed to reach a desired performance of automated classification. Results show that crowdsourcing is useful to create high-quality annotations and active learning helps in reducing the number of required tweets, although there was no substantial difference among the strategies tested.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源