论文标题
原始集合的概括和ERDS的猜想
A generalization of primitive sets and a conjecture of Erdős
论文作者
论文摘要
如果没有元素划分另一个元素,则一组大于1的整数是原始的。 Erdő在1935年证明,$ 1/(n \ log n)$的$ n $的总和在原始套件上运行$ a $在所有选择上普遍限制在$ a $上。 1988年,他询问该通用界限是否通过质数集获得。我们在肯定的2个基集中回答了ERD的问题。如果没有元素将其他两个元素的乘积分开,则这里的集合是2个基础。
A set of integers greater than 1 is primitive if no element divides another. Erdős proved in 1935 that the sum of $1/(n \log n)$ for $n$ running over a primitive set $A$ is universally bounded over all choices for $A$. In 1988 he asked if this universal bound is attained by the set of prime numbers. We answer the Erdős question in the affirmative for 2-primitive sets. Here a set is 2-primitive if no element divides the product of 2 other elements.