论文标题
杀死带纺纱型的形式及其可集成性条件
Killing spinor-valued forms and their integrability conditions
论文作者
论文摘要
我们研究定义杀死矢量值形式的PDE的不变系统,然后我们专门杀死旋转器值。我们通过将解决方案的点值与基础歧管的曲率联系起来,对它们的延长和整合性条件进行详细的处理。例如,我们完全在恒定曲率的模型空间上完全求解了产生全新溶液的模型空间,这些溶液并非来自杀死旋转器和杀死Yano形式的张量产品。
We study invariant systems of PDEs defining Killing vector-valued forms, and then we specialize to Killing spinor-valued forms. We give a detailed treatment of their prolongation and integrability conditions by relating the point-wise values of solutions to the curvature of the underlying manifold. As an example, we completely solve the equations on model spaces of constant curvature producing brand new solutions which do not come from the tensor product of Killing spinors and Killing-Yano forms.